STRUCTURAL DESIGN

1 - Cover

2 - Attachment of pulley with clamping set
3 - Anodized aluminium housing
4- Toothed belt
5- Belt tensioning system (elongation and frequency of belt span provided with delivery of unit)
6 - Motor
7 - Linear unit - CTV / MTV
The linear unit must be executed with drive journal without keyway, so that the MSD belt The live can be mounted on it.
drit must be exec

HOW TO ORDER

Type :

TECHNICAL DATA AND DIMENSIONS

MTV 40

Linear Unit	Type	Gear ratio	Max. drive torque (linear unit)	** Max. radial load on shaft	Mass moment of inertia	Mass ***	$\begin{aligned} & \text { ФB } \\ & \text { max } \end{aligned}$	$\begin{aligned} & \text { øC } \\ & \text { max } \end{aligned}$	*M max	Mo	size lim L1	${ }_{\text {max }}$] Clamping set		
		i	[Nm]	[N]	[$10^{-6} \mathrm{~kg} \mathrm{~m}^{2}$]	[kg]				Clamping set	Keyway		max	min	max
MTV 40	T1	1	1,3	60	4,6	0,5	60	36	4	****	20	32	8	>8	12
		1,5	1,3	60	5,4	0,5							8	-	-
MTV 40	T2	1	3	80	45	0,8	80	52	4		25	39	19	-	-
		1,5	3	80	31	0,7							10	>10	14
CTV 90	T1	1	2,7	90	75	0,8	70	-	4		25	39	19	-	-
		1,5	2,7	90	45	0,7							10	>10	14
CTV 110 MTV 65	T1	1	5	175	70	0,8	70	-	4		25	39	19	-	-
		1,5	5	175	45	0,8							10	>10	14
CTV 110 MTV 65	T2	1	9	245	210	1,5	100	-	4		30	49	22	-	-
		1,5	11	235	330	1,5							19	>19	28
CTV 145 MTV 80	T1	1	13	350	210	1,5	100	-	4		30	49	22	-	-
		1,5	19	410	330	1,6							19	>19	28
CTV 145 MTV 80	T2	1	19	410	550	3,0	130	-	4		35	59	35	-	-
		2	24	375	860	2,9							19	>19	28
CTV 200 MTV 110	T1	1	25	500	640	3,8	130	-	4		35	59	35	-	-
		2	25	400	960	3,6							19	>19	28

(max. drive speed: 3000 1/min; No load torque: approx. $0,5 \mathrm{Nm}$)
*For a bigger value an additonal adapter plate is used. For the case of MTV 40 a thicker plate may be used.
${ }^{* *}$ This is the load which is linearly dependent on the max. drive torque and is generated by the correct pretension of the belt. This load needs to be reduced in accordance with the capabilities of the motor.
*** This is an average value. It could differ depending to the motor dimensions.
**** Minimum dimension L1 depends on the size of particular clamping set. Values can be found in the table on page 7.105.0.

[^0]
TECHNICAL DATA AND DIMENSIONS

Minimum dimension L1 [mm] depends on the motor shafts diameter ØD

CTV, CTJ

Linear Unit	-	Dimensions [mm]										Screw	Countersink for	Weight [kg]	Code
		A	B	C	D	L	E	F	G	ØH	K				
MTJ, MRJ, MTV 40	T2	50	64,4	40	7,5	55	2,5	15	7,2	5,5	8	M5	DIN 912	0,014	37139
MTJ, MRJ, MTV 65	T2	78	93	40	10	60	11,5	20	7,5	6,5	20	M6	DIN 912	0,054	37129
MTJ, MRJ, MTV 80	T2	93	108	40	10	60	11,5	20	7,5	6,5	20	M6	DIN 912	0,054	37129
MTJ, MRJ, MTV 110	T2	130	150	40	10	60	18	30	10	8,5	27	M8	DIN 912	0,082	44375
MTJ ECO 40	T2	52	66	40	7,5	55	14,5	20	7	5,5	20	M5	DIN 912	0,035	40728
CTV, CTJ 90	T1	102	112	1	12,5	25	4,5	15	5	4,5	9	M4	DIN 912	0,01	46994
CTV, CTJ 90	T2	102	112	40	11	62	4,5	15	5	4,5	9	M4	DIN 912	0,02	48636
CTV, CTJ 90	T3	102	112	20	8,5	77	4,5	15	5	4,5	9	M4	DIN 912	0,025	47163
CTV, CTJ 90	T3	102	112	25	6	87	4,5	15	5	4,5	9	M4	DIN 912	0,028	55261
CTV, CTJ 90	T3	102	112	30	8,5	107	4,5	15	5	4,5	9	M4	DIN 912	0,031	55638
CTV, CTJ 110	T 1	126	140	1	12,5	25	3,4	20	7	6,6	10	M6	DIN 912	0,01	48642
CTV, CTJ 110	T2	126	140	40	11	62	3,4	20	7	6,6	10	M6	DIN 912	0,03	48643
CTV, CTJ 110	T3	126	140	20	8,5	77	4,5	20	7	5,5	10	M5	DIN 912	0,03	48640
CTV, CTJ 110	T3	126	140	30	8,5	107	4,5	20	7	5,5	10	M5	DIN 912	0,045	46995
CTV, CTJ 110	T3	126	140	40	11	142	3,4	20	7	6,6	10	M6	DIN 912	0,056	55260
CTV, CTJ 145	T 1	161	175	1	12,5	25	3,4	20	7	6,6	10	M6	DIN 912	0,01	48642
CTV, CTJ 145	T2	161	175	40	11	62	3,4	20	7	6,6	10	M6	DIN 912	0,03	48643
CTV, CTJ 145	T3	161	175	20	8,5	77	4,5	20	7	5,5	10	M5	DIN 912	0,03	48640
CTV, CTJ 145	T3	161	175	30	8,5	107	4,5	20	7	5,5	10	M5	DIN 912	0,045	46995
CTV, CTJ 145	T3	161	175	40	11	142	3,4	20	7	6,6	10	M6	DIN 912	0,056	55260
CTV, CTJ 200	T2	222	240	40	19	78	14,8	29	9	8,5	27,5	M8	DIN 912	0,110	53049
CTV, CTJ 200	T 2	222	240	50	19	88	14,8	29	9	8,5	27,5	M8	DIN 912	0,120	53050
CTV, CTJ 200	T2	222	240	70	19	108	16,3	29	9	8,5	27,5	M8	DIN 912	0,160	53051

Recommended number of clamping fixtures: For T1 is recommended 6 pcs. per meter on each side, for T2 is recommended 3 pcs. per meter on each side and for $T 3$ is recommended 3 pcs. per meter on each side.

CENTERING RINGS

CR 7

CR 12

CR 9

CR 16

CR 9 / 12

Type	Compatible with	Code
CR 7	MTJ/MRJ/MTJZ/MTV: 40, 65	23332
CR 9	MTJ/MRJ/MTV/MTJZ: 80,110 CTV/CTJ: 90, 110	23331
CR 7/9	MTJ, MRJ, MTV, MTJZ, CTV/CTJ: 90, 110	75114
CR 9/12	MTJ/MRJ/MTV/MTJ: 80,110 CTV/CTJ: 90, 110, 145	48885
CR 12	CTV/CTJ: 145	49049
CR 16	CTV/CTJ: 200	53023

SLOT NUTS

DIN562

Slot Nut
*- deviating CODE

CODE	NUT TYPE	$\begin{gathered} \text { MTJ/MRJ } \\ 40 \end{gathered}$	MTV 40	MTJ/MRJ/ MTV/MTJZ 65	MTJ/MRJ/ MTV/MTJZ 80	MTJ/MRJ/MTV MTJZ 110	$\begin{array}{\|c\|} \hline \text { MTJ 40 } \\ \text { ECO } \end{array}$	CTV 90 CTJ 90	CTV 110 CTJ 110	$\begin{aligned} & \text { CTV } 145 \\ & \text { CTJ } 145 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { CTV } 200 \\ \text { CTJ } 200 \end{array}$
41609	DIN562-M2,5		X					X	X	X	
40682	DIN562-M4	X - *57017		X	X			X			X
40768	DIN562 - M5								X	X	
40769	DIN557-M5			X	X						
44451	DIN557-M8					X					X
5746	Slot Nut M6						X				
5551	Slot Nut T-10-m8										X
5552	Slot Nut T-10-M6										X
5553	Slot Nut T-10-M5										X
5570	Slot Nut T-10-M8 L=90										X

LINEAR UNITS - CONNECTION PLATES

CODE	NUT TYPE	$\begin{aligned} & \text { CTV } 200 \\ & \text { CTJ } 200 \end{aligned}$	CODE	NUT TYPE	CTV 145 CTJ 145	CODE	NUT TYPE	CTV 110 CTJ 110	CTV 90 CTJ 90
5551	Slot Nut T-10-M8	X	5704	Slot Nut 8LM4	X	48887	Slot Nut 6LM4	X	X
5552	Slot Nut T-10-M6	X	5703	Slot Nut 8LM5	X	48888	Slot Nut 6LM5	X	X
5553	Slot Nut T-10-M5	X	5702	Slot Nut 8LM6	X				
5570	Slot Nut T-10-M8 L =90	X	5701	Slot Nut 8LM8	X				

MTJ / MRJ / MTV

1 - Magnetic field sensor
2 - Sensor holder

(1) Mounting of Magnetic field sensor on CTV and CTJ series requires a HOM sensor holder.
For MTV 40 a HOM sensor holder is also needed. For CTV/CTJ 200 a HOM sensor holder is not needed.

TECHNICAL DATA	SMT-65TP-K NC	SMT-65TP-K NO
Sensor Type	GMR sensor	GMR sensor
Switching function	NC	NO
Output	PNP	PNP
Operating voltage	$10 \sim 28 \mathrm{~V}$ DC	$10 \sim 28 \mathrm{~V}$ DC
Switching Current	200 mA max.	200 mA max.
Power rating	5,5 W max.	5,5 W max.
Voltage Drop	$1,5 \mathrm{~V} / 200 \mathrm{~mA}$ max.	$1,5 \mathrm{~V} / 200 \mathrm{~mA}$ max.
Current Consumption	$10 \mathrm{~mA} / 24 \mathrm{~V}$ max.	$10 \mathrm{~mA} / 24 \mathrm{~V}$ max.
Switching Frequency	1000 Hz	1000 Hz
Ambient temperature	$-10 \sim+70^{\circ} \mathrm{C}$	$-10 \sim+70^{\circ} \mathrm{C}$
Shock/Vibration	$50 \mathrm{G} / 9 \mathrm{G}$	$50 \mathrm{G} / 9 \mathrm{G}$
Protection class	IP 67	IP 67
LED indicator	yellow	Yellow
Electrical connection	M8, 3-pin	M8, 3-pin
Cable material length	PU - $0,3 \mathrm{~m}$	PU -0,3 m
Extension cable	Energy chain compliant	Energy chain compliant

MTJ / MRJ / MTV

CTV / CTJ

Mounting and using the Induction and Mechanical switch, can be done only if the CTV and CTJ series Linear Units are delivered with Connection plates.

MS-Mehanical switch

TECHNICAL DATA

Protection class IEC 60529
Ambient temperature
Operating point accuracy
Approach speed max.
Approach speed min.
Switching contact
Switching principle
Rated voltage
Switching current, min. at
Switching voltage
Cable entry

IP 67
$-5^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
$\pm 0.05 \mathrm{~mm}$
$45 \mathrm{~m} / \mathrm{min}$
$0,01 \mathrm{~m} / \mathrm{min}$
1 changeover
Snap-action
250 V AC
10 mA
24 V DC
$\mathrm{M} 12 \times 1,5$

ORDERING CODES		$\begin{gathered} \text { MTJ/MRJ } \\ 40 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { MTJZ } \\ 40 \end{array}$	$\begin{gathered} \text { MTV } \\ 40 \end{gathered}$	MTJ/MRJ/MTV 65 MTJZ 65/80	MTJ/MRJ/MTV 80	MTJIMRJ/ MTV 110	$\begin{gathered} \text { MTJZ } \\ 110 \end{gathered}$	$\begin{gathered} \text { MTJ ECO } \\ 40 \end{gathered}$	$\begin{gathered} \text { CTV/CTJ } \\ 90 \end{gathered}$	$\begin{gathered} \text { CTV/CTJ } \\ 110 \end{gathered}$	$\begin{gathered} \text { CTV/CTJ } \\ 145 \end{gathered}$	$\begin{array}{\|c} \hline \text { CTV/CTJ } \\ 200 \end{array}$
(6) $+2 \times$ 号	Activation block with fixing screws	43243	52022	43243	43247	43256	47827	63702	49030	49032	49031	40652	40652
0^{0}	Mechanical switch only						47921						
$2 \times \vec{\square}+\square+2 \times \square+\square$	Mechanical switch with mounting elements	4068		104970	40687	40689	47826	63703	49035	49034	49033	47939	53055

IS- Inductive switch

TECHNICAL DATA

1 - Motor
2 - Motor adapter
3 - Coupling
4 - Linear Unit

Motor adapter :

Linear Unit : \qquad
Motor type :
According to customer's specification
Coupling type :
See page $\mathbf{8 . 0 2 0 . 0}$ or According to customer's specification
COUPLINGS

Size	* Tkn Nominal [Nm]	$\begin{gathered} \text { * }^{T_{\text {Kmax }}} \\ {[\mathrm{Nm}]} \end{gathered}$	$\begin{gathered} \mathrm{Ms} \\ {[\mathrm{Nm}]} \end{gathered}$	W [Kg]	b $\mathrm{J}\left[\mathrm{Kgm}^{2}\right]$	$\underset{\left[\min ^{-1}\right]}{n_{\text {max }}}$	$\begin{gathered} \mathbf{A} \\ {[\mathrm{mm}]} \end{gathered}$	$\underset{[\mathrm{mm}]}{\underset{\mathrm{min}}{\mathrm{~F}}}$	$\begin{gathered} \mathrm{F} \\ \max \\ {[\mathrm{~mm}]} \end{gathered}$	$\stackrel{f}{[\mathrm{~mm}]}$	$\stackrel{\mathrm{L}}{[\mathrm{~mm}]}$	$\begin{gathered} \mathrm{I} \\ {[\mathrm{~mm}]} \end{gathered}$	$\underset{[\mathrm{mm}]}{\mathrm{M}}$	$\underset{[\mathrm{mm}]}{\mathrm{N}}$	$\stackrel{\mathrm{S}}{[\mathrm{~mm}]}$	$\begin{gathered} \mathbf{P} \\ {[\mathrm{mm}]} \end{gathered}$	$\stackrel{\stackrel{\mathrm{t}}{[\mathrm{~mm}}]}{ }$	$\underset{[\mathrm{mm}]}{\mathrm{E}}$
7	2	4	0,35	0,003	$0,085 \times 10$	40.000	14	3	7	M2	22	7	8	6	1,0	6	4	15,0
9	5	10	0,75	0,007	$0,42 \times 10$	28.000	20	4	10	M2,5	30	10	10	8	1,0	2	5	23,4
14	12,5	25	1,4	0,018	$2,6 \times 10$	19.000	30	6	16	M3	35	11	13	10	1,5	2	5,5	32,2
19/24	17	34	11	0,071	$18,1 \times 10$	14.000	40	10	20	M6	66	25	16	12	2,0	3,5	12	45,7
24/28	60	120	11	0,156	$74,9 \times 10$	10.600	55	10	32	M6	78	30	18	14	2,0	4	12	56,4
28/38	160	320	25	0,240	$163,9 \times 10$	8.500	65	14	35	M8	90	35	20	15	2,5	5,2	13,5	72,6
38/45	325	650	25	0,440	$465,5 \times 10$	7.100	80	19	45	M8	114	45	24	18	3,0	5,6	16	83,3

[^1]| Size | Recommended coupling bore diam. and Transmissible Torque [Nm] - valid for shaft tolerances k6 without Keyway | |
| :---: |
| | ø4 | ø5 | ø6 | ø7 | ø8 | ø9 | ¢10 | ø11 | ¢12 | ¢14 | $\varnothing 15$ | ø16 | $\varnothing 19$ | ø20 | ø22 | 024 | $\varnothing 25$ | ø28 | ø30 | ø32 | ø35 | ø38 | ø40 | ø42 | ¢45 |
| 7 | 0,7 | 0,8 | 1,0 | 1,1 | |
| 9 | 1,1 | 1,4 | 1,7 | 1,9 | 2,2 | 2,5 | 2,8 | | | | | | | | | | | | | | | | | | |
| 14 | | | 2,5 | 2,9 | 3,3 | 3,7 | 4,1 | 4,6 | 5,0 | 5,8 | 6,2 | 6,6 | | | | | | | | | | | | | |
| 19/24 | | | | | | | 23 | 25 | 27 | 32 | 34 | 36 | 43 | 45 | | | | | | | | | | | |
| 24/28 | | | | | | | 23 | 25 | 27 | 32 | 34 | 36 | 43 | 45 | 50 | 54 | 57 | 63 | | | | | | | |
| 28/38 | | | | | | | | | | 58 | 62 | 66 | 79 | 83 | 91 | 100 | 104 | 116 | 124 | 133 | 145 | | | | |
| 38/45 | | | | | | | | | | | | | 79 | 83 | 91 | 100 | 104 | 116 | 124 | 133 | 145 | 158 | 166 | 174 | 187 |

Ms	Screw tightening torque	Nm
W	Weight	Kg
J	Coupling moment of inertia	kgm^{2}
nmax $^{\text {M }}$	Maximum rpm	min^{-1}
TkN	Coupling nominal torque	Nm
Tkmax	Coupling maximum torque	Nm

The operating temperature range for the coupling is between -30 and $+90^{\circ} \mathrm{C}$

SYNCHRONISATION SHAFT OSL

Size	Internal hub		CT [$\mathrm{Nm} / \mathrm{rad}$]	$\begin{gathered} \mathrm{E} \\ {[\mathrm{~mm}]} \end{gathered}$	$\underset{[\mathrm{mm}]}{\mathrm{H}}$	$\begin{gathered} \varnothing d \\ \min \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \text { ød } \\ \max \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{M} \\ {[\mathrm{~mm}]} \end{gathered}$	$\underset{[\mathrm{mm}]}{\mathrm{N}}$	$\begin{gathered} \mathrm{S} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{Lw} \\ \mathrm{~min} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{Lt} \\ {[\mathrm{~mm}]} \end{gathered}$	dR x thickness [mm]	Weight [kg]	Moment of inertia$\left[10^{-6} \mathrm{~kg} * \mathrm{~m}^{2}\right]$
	Ms [Nm]	Mt [Nm]														
14	1,34	6	59	30	11	4	16	13	10	1,5	35	48	$\begin{aligned} & \tilde{\omega} \\ & \stackrel{0}{0} \\ & \underset{\sim}{2} \end{aligned}$	$14 \times 2,0$	0,072 + 0,00021 * Lw	10,4 + 0,0076 * Lw
19/24	10	34	314	40	25	6	20	16	12	2	66	82		$20 \times 3,0$	0,284 + 0,00044 * Lw	72,4 + 0,0324 * Lw
24/28	10	45	596	55	30	8	28	18	14	2	78	96		$25 \times 2,5$	0,624 + 0,00048 * Lw	$300+0,0614$ * Lw
28/38	25	105	2868	65	35	10	38	20	15	2,5	90	110	\bigcirc	$35 \times 5,0$	0,960 + 0,00128 * Lw	$656+0,2954$ * Lw
38/45	25	123	4521	80	45	12	45	24	18	3	114	138		$40 \times 5,0$	1,760 + 0,00149 * Lw	$1862+0,4656$ * Lw

Ms	Screw tightening torque	Nm
MT	Maximum transmissible torque	Nm
CT	Torsional rigidity per meter	$\mathrm{Nm} / \mathrm{rad}$

* - see page 8.030.0 for more info
(1)

For longer distances Bearing Supports needed. Please contact us.

1) The maximum transmittable torque of the clamping hub depends on the bore diameter (see the
upper table on page 8.025.0).

Size	$\begin{aligned} & d \min \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{aligned} & \mathrm{d} \max \\ & {[\mathrm{~mm}]} \end{aligned}$	$\begin{gathered} \mathrm{Ms} \\ {[\mathrm{Nm}]} \end{gathered}$	$\begin{gathered} \mathrm{MT} \\ {[\mathrm{Nm}]} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{T}} \\ {[\mathrm{Nm} / \mathrm{rad}]} \end{gathered}$	$\begin{gathered} E \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{H} \\ {[\mathrm{mm}]} \end{gathered}$	$\left\|\begin{array}{c} 1 \\ {[\mathrm{~mm}]} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}\right.$	$\begin{gathered} \mathrm{M} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{Lw} \\ \mathrm{~min} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{Lt} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{t} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{e} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{dR} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \text { Weight } \\ & {[\mathrm{kg}]} \end{aligned}$	$\begin{aligned} & \text { Moment of inertia } \\ & {\left[10^{-6} \mathrm{~kg}^{*} \mathrm{~m}^{2}\right]} \end{aligned}$
19	10	20	10	39	1630	40	25	13	53,5	16	82		47	12	15	36	0,30 + 0,00058 * Lw	66,0 + 0,1679 * Lw
24	10	28	10	53	3980	55	30	16	63	18	96		57	14	20,8	45	0,62 + 0,00091 * Lw	$242+0,4099$ * Lw
28	14	35	25	137	7494	65	35	20	67	20	110		73	15	25	55	0,98 + 0,00112 * Lw	$572+0,7717$ * Lw
38	15	45	25	180	14540	80	45	25	83,5	24	138		84	20	30	68	1,75 + 0,00140 *w	$1522+1,4975$ * Lw

Ms	Screw tightening torque	Nm
MT	Maximum transmissible torque	Nm
$\mathrm{CT}_{\boldsymbol{T}}$	Torsional rigidity per meter	$\mathrm{Nm} / \mathrm{rad}$

INSTALLATION

The overall length $L t$ is best determined as the distance between shaft ends length Lw plus $2 x$ dimension H .

SELECTION DIAGRAM

Ideal execution for long distance shat connections.
Torque transmission is zero backlash. Designed for lengths up to $4 m$ without bearing support (depending on rotation speed).

Standard lenghts available till 3 m , for longer lengths please contact us.

HOW TO ORDER

Lt (Production length of the sync. shaft)

The specifications in order to improve the products in this catalogue are subject to change without notice.

X-Y CONNECTION ELEMENTS

X- Axis MTJ, MRJ, MTV, MTJ ECO, CTV $=0^{\circ} \longrightarrow$ Y Axis $=0^{\circ}$

X -Axis	MTJ, MRJ, MTV 40	MTJ, MRJ, MTV 65	MTJ, MRJ, MTV 80	MTJ, MRJ, MTV 110	$\begin{aligned} & \text { Y-Axis } \\ & \text { MTJ } 40 \text { ECO } \end{aligned}$	CTV, CTJ 90	CTV, CTJ 110	CTV, CTJ 145	CTV, CTJ 200
MTJ, MRJ, MTV 40	CP M40 0 M40 0	CP M40 0 M65 0			CP M40 0 E40 0	CP M40 0 C90 0			
MTJ, MRJ, MTV 65	CP M65 0 M40 0	CP M65 0 M65 0	CP M65 0 M80 0		CP M65 0 E40 0	CP M65 0 C90 0	CP M65 0 C110 0		
MTJ, MRJ, MTV 80		CP M80 0 M65 0	CP M80 0 M80 0	CP M80 0 M110 0		CP M80 0 C90 0	CP M80 0 C110 0	CP M80 0 C145 0	
MTJ, MRJ 110		CP M110 0 M65 0	CP M110 0 M80 0	CP M110 0 M110 0			CP M110 0 C110 0	CP M110 0 C145 0	CP M110 0 C200 0
MTJ 40 ECO	CP E40 0 M40 0	CP E40 0 M65 0	CP E40 0 M80 0		CP E40 0 E40 0	CP E40 0 C90 0	CP E40 0 C110 0		
CTV, CTJ 90	CP C90 0 M40 0	CP C90 0 M65 0				CP C90 0 C90 0	CP C90 0 C110 0		
CTV, CTJ 110	CP C110 0 M40 0	CP C110 0 M65 0	CP C110 0 M80 0			CP C110 0 C90 0	CP C110 0 C110 0	CP C110 0 C145 0	
CTV, CTJ 145		CP C145 0 M65 0	CP C145 0 M80 0	CP C145 0 M110 0		CP C145 0 C90 0	CP C145 0 C110 0	CP C145 0 C1450	
CTV, CTJ 200			CP C200 0 M 800	CP C200 0 M110 0			CP C200 0 C110 0	CP C200 0 C145 0	CP C200 0 C200 0

X- Axis MTJ, MRJ, MTV, MTJ ECO, CTV = 0°
 Y Axis $=90^{\circ}$

X -Axis	MTJ, MRJ, MTV 40	MTJ, MRJ, MTV 65	MTJ, MRJ, MTV 80	MTJ, MRJ, MTV 110	$\begin{aligned} & \text { Y-Axis } \\ & \text { MTJ } 40 \text { ECO } \end{aligned}$	CTV, CTJ 90	CTV, CTJ 110	CTV, CTJ 145	CTV, CTJ 200
MTJ, MRJ, MTV 40	CP M40 0 M40 90	CP M40 0 M65 90			CP M40 0 E40 90	CP M40 0 C90 90			
MTJ, MRJ, MTV 65	CP M65 0 M40 90	CP M65 0 M65 90	CP M65 0 M80 90			CP M65 0 C90 90	CP M65 0 C110 90		
MTJ, MRJ, MTV 80		CP M80 0 M65 90	CP M80 0 M80 90	CP M80 0 M110 90		CP M80 0 C90 90	CP M80 0 C110 90	CP M80 0 C145 90	
MTJ, MRJ 110		CP M110 0 M65 90	CP M110 0 M80 90	CP M110 0 M110 90			CP M110 0 C110 90	CP M110 0 C145 90	CP M110 0 C200 90
MTJ 40 ECO	CP E40 0 M40 90	CP E40 0 M65 90	CP E40 0 M80 90		CP E40 0 E40 90	CP E40 0 C90 90	CP E40 0 C110 90		
CTV, CTJ 90	CP C90 0 M40 90	CP C90 0 M65 90				CP C90 0 C90 90			
CTV, CTJ 110	CP C110 0 M40 90	CP C110 0 M65 90	CP C110 0 M80 90			CP C110 0 C90 90	CP C110 0 C110 90		
CTV, CTJ 145		CP C145 0 M65 90	CP C145 0 M80 90	CP C145 0 M110 90		CP C145 0 C90 90	CP C145 0 C110 90	CP C145 0 C145 90	
CTV, CTJ 200			CP C200 0 M80 90	CP C200 0 M110 90			CP C200 0 C110 90	CP C200 0 C145 90	CP C200 0 C200 90

Y- Axis MTJ, MRJ, MTV, MTJ ECO, CTV, CTJ = 0°

Z-Axis $=90^{\circ}$

Y-Axis	MTJZ 40	MTJZ 65	MTJZ 80	MTJZ 110	Z-Axis		MTV 80	MTV 110	CTV 90	CTV 110	CTV 145
					MTV 40	MTV 65					
MTJ, MRJ, MTV 40	CP M40 0 Z40				CP M40 0 ZM40						
MTJ, MRJ, MTV 65	CP M65 0 Z40	CP M65 0 Z65			CP M65 0 ZM40	CP M65 0 ZM65					
MTJ, MRJ, MTV 80	CP M80 0 Z40	CP M80 0 Z65	CP M80 0 Z80		CP M80 0 ZM40	CP M80 0 ZM65	CP M80 0 ZM80				
MTJ, MRJ, MTV 110		CP M110 0 Z65	CP M110 0 Z80	CP M110 0 Z110		CP M110 0 ZM65	CP M110 0 ZM80	CP M110 0 ZM110			
MTJ 40 ECO	CP E40 0 Z40										
CTV, CTJ 90	CP C90 0 Z40	CP C90 0 Z65			CP C90 0 ZM40				$\begin{gathered} \text { CP C90 } 0 \\ \text { ZC90 } \end{gathered}$		
CTV, CTJ 110	CP C110 0 Z40	CP C110 0 Z65	CP C110 0 Z80		CP C110 0 ZM40	CP C110 0 ZM65	CP C110 0 ZM80		$\begin{gathered} \text { CP C1100 } 0 \\ \text { ZC90 } \end{gathered}$	$\begin{gathered} \text { CP C110 } 0 \\ \text { ZC110 } \end{gathered}$	
CTV, CTJ 145	CP C145 0 Z40	CP C145 0 Z65	CP C145 0 Z80	CP C145 0 Z110		CP C145 0 ZM65	CP C145 0 ZM80	CP C145 0 ZM110	$\begin{gathered} \text { CP C145 } 0 \\ \text { ZC90 } \end{gathered}$	$\begin{gathered} \text { CP C145 } 0 \\ \text { ZC110 } \end{gathered}$	$\begin{gathered} \text { CP C145 } 0 \\ \text { ZC145 } \end{gathered}$
CTV, CTJ 200			CP C200 0 Z80	CP C200 0 Z110			CP C200 0 ZM80	CP C200 0 ZM110		$\begin{gathered} \text { CP C200 } 0 \\ \text { ZC110 } \end{gathered}$	$\begin{gathered} \text { CP C200 } 0 \\ \text { ZC145 } \end{gathered}$

Linear Unit must be mounted by the aluminium profile and not at the end blocks!

For more details about Alu profiles see PROFILE TECHNIC catalogue.

[^0]: *This is a standard value. It could differ depending to the motor dimensions M and $L 1$.

[^1]: *The values of nominal $T_{K N^{* *}}$ and max. TKmax** transmissible torque in the upper table are valid for coupling with Keyway! **for legend see page 8.025.0

